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A B S T R A C T   

Scenario-based land use/land cover change (LUCC) simulation can explore different possibilities in the future for 
decision-making on city development. However, the current LUCC research in urban-rural areas still lacks 
support for local climate change research due to unmatched scenario settings and simplified land coverage 
classification. We thus adopt the local climate zone (LCZ) scheme, which includes more detailed 18 land types, to 
explore future LUCC in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) under the latest Intergov
ernmental Panel on Climate Change (IPCC) scenario, the shared socioeconomic pathways (SSPs), with different 
policy constraints. First, we produce a 100-m spatial resolution LCZ map of the GBA in 2020, which achieves an 
accuracy with Kappa = 0.876. Then, we carry out an LCZ simulation by adopting the Global Change Analysis 
Model (GCAM) and Future Land Use Simulation Model (FLUS) from 2020 to 2100 under the SSPs. The results 
show that LCZ projections appropriately reflect different land responses under different SPPs and the contrastive 
LCZ spatial changes among different cities even under the same scenario. Ecological protection is a crucial goal in 
the development plan of the Chinese government. Thus, we add the ecological control lines to protect ecological 
land under SSPs. This protection is pronouncedly reflected in ecological land within built-up areas in central 
cities and ecological land around urban areas in fringe cities. This study is the first test of LCZ projection under 
SSPs. The study findings could serve as an application potential for urban planning, urban climate and mega-city 
studies globally.   

1. Introduction 

Since the Industrial Revolution, human activities have increasingly 
affected the environment, including climate [1]. There is a conclusive 
evidence shows that, since the end of the 19th century, the global sur
face temperature has risen by 0.9 ◦C [1]. It has been proven that land 
use/land cover change (LUCC) is one of the crucial factors profoundly 
affecting the climate at both a regional and a global scale, such as surface 
temperature [2], carbon emissions [3] extreme wheather [4]. Simulta
neously, human policies can significantly affect land change, such as 
urban planning, land management, afforestation, deforestation, and 
agricultural expansion [5–9]. To address the challenges of climate 
change and create a more liveable future, countries worldwide have 
formulated sustainable goals and plans that can be achieved through 
implementable policies. For instance, in 2015, countries in the United 

Nations signed the Sustainable Development Goals (SDGs) to be reached 
by 2030, which includes 17 SDGs and 169 targets [10]. At the national 
level, taking China as an example, China has made sustainable devel
opment one of its government’s crucial strategies and is committed to 
building a sustainable society in its five-year development plan [11]. 
These goals and plans will be transformed into different local policies on 
city development, directly affecting LUCC. 

To explore the impact of policies on LUCC, many researchers have 
performed land change simulations under different policy-pathway 
scenarios. Some of these simulation studies only focus on urban area 
[12], while others consider different land types [13]. In many local and 
regional studies, the basis for scenarios setting is often relatively 
straightforward. The popular future scenarios set up and adopted by 
researchers include development along the historical trajectory, crop
land protection policies, ecological zone protection policies, and energy 
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consumption [14–18]. However, the parameters for setting these sce
narios are relatively simple, and the standards for setting parameters are 
also relatively arbitrary, these limitations hence restrict the compara
bility between different studies and the versatility of products. 

To meet the universality of climate change scenarios, Coupled Model 
Intercomparison Project Phase 6 (CMIP6) proposes a new scenario 
framework, the shared socioeconomic pathways (SSPs), for global 
climate and LUCC researchers. This framework has also been adopted by 
the Intergovernmental Panel on Climate Change (IPCC) [19]. The SSPs is 
a scenario framework that considers socioeconomic, technology, and 
policies, which also corresponds to certain climate consequences [20]. 
There are five scenarios of the SSPs. SSP1 is a scenario of sustainable 
development, taking the green road [21]. SSP3 is a road of regional 
competition, reducing international trade with slow economic devel
opment [22]. SSP2 is the middle road between SSP1 and SSP3 [23]. 
SSP4 is the road of division, in which the developed regions will be well 
developed and managed, while the backward regions are the opposite 
[24]. SSP5 is the road of fossil-fuelled development, which yields rapid 
economic growth but emits more carbon [25]. 

However, there is still a lack of land-cover change research based on 
SSPs. For example, Popp et al. [26] only projected the land area of 
different regions under the SSPs but lacked spatial details. The official 
land cover data set of CMIP6, LUH2 [27], only has a coarse resolution of 
0.25◦. Chen et al. [28] developed a 1-km resolution projection of future 
global urban expansion based on SSPs, but their results can only 
distinguish between urban and non-urban land. Similarly, in the future 
LUCC simulation of China conducted by Liao et al. [29], urban land is 
treated as a whole. For researches on urban geographies, such as urban 
climate, urban energy and urban planning, a single urban land type can 
not provide sufficient reference information. However, current research 
mainly focuses on the global and national scales, and there are still gaps 
in studying the impact of SSPs on land change at the regional scale. 

To address urban-rural description inadequacies, a new land classi
fication, local climate zone (LCZ), was proposed [30]. LCZ is a concept 
developed to depict urban morphology and land surface structure and 
provide an international standardised land-use and land-cover classifi
cation approach for cross-comparison within and between cities [30]. 
The LCZ scheme was initially designed conceptually at a local scale in 
urban and rural environments [31,32]. Compared to natural land areas 
with a higher vegetation coverage ratio, urban areas with a higher 
impervious surface coverage ratio trap more heat and energy. Therefore, 
the impervious surface in urban areas will increase the sensible heat 
flux, which will lead to the urban heat island (UHI) effect [33]. 
Compared with the general land-use and land-cover classification, LCZ 
can provide more detailed information about the urban-rural 
environment. 

Besides, LCZ will be a suitable classification for the research gaps in 
the regional-scale land change research on SSP scenarios, especially in 
metropolitan areas. Therefore, we choose the Guangdong-Hong Kong- 
Macao Greater Bay Area (GBA) as the study area. The GBA is one of the 
regions with the highest degree of openness and the most economic 
vitality in China, aiming to become a world-class urban agglomeration. 
Moreover, the Chinese government has elevated the GBA’s development 
to a national strategic position and formulated a particular development 
plan [34]. The GBA will have a vast potential for growth and a strong 
driving force for its development into a world-class bay area. 

Therefore, in this study, we will carry out an LCZ map at a 100-m 
scale in 2020 and implement a projection of future LCZ dynamics in a 
famous metropolitan area, the GBA, under the SSPs. Further, we will 
explore the impact of the implementation of the local land management 
policy, the ecological control line, on land change in the context of SSPs. 
This study may be the world’s first projection of the future LCZ under the 
SSPs at the metropolitan scale. 

2. Materials and methods 

The flow chart of this study is shown in Fig. 1. It can be divided into 
three parts: the first is the mapping of LCZ distribution in the GBA in 
2020; the second is the forecast of future land demand based on SSPs; 
the third is the spatial simulation of future LCZ under different SSPs and 
land management policy constraints. 

2.1. Study area 

The GBA surrounds the Pearl River’s estuary with 56,000 km2, 
including two special administrative regions of Hong Kong and Macao, 
and nine of Guangdong Province’s prefecture-level cities: Guangzhou, 
Shenzhen, and Foshan Dongguan, Zhongshan, Zhuhai, Huizhou, Jiang
men, and Zhaoqing (Fig. 2). By the end of 2017, the GBA had 72.65 
million people and 12% of the national GDP, with a per capita GDP of US 
$23,100 [34]. Compared to the world’s major bay areas, the New York 
Bay Area, Tokyo Bay Area, and San Francisco Bay Area, GBA has the 
largest population and most extensive area [35]. Although the current 
per capita GDP of the GBA is still far behind that of other major Bay 
Areas, the GBA has experienced a rapid development process in the past 
three decades and still shows enormous development potential. In the 
nine cities in Guangdong Province, their resident population increased 
by 160%, and their GDP increased by 74 times from 1990 to 2017 [36]. 

2.2. Data input  

(1) Spatial data for future LCZ simulation 

Land simulation researchers have proved that land dynamic is 
closely related to spatial driving factors [37–40]. One of the keys to 
carry out land change simulation correctly is to select appropriate 
spatial driving factors to reflect the socioeconomic and physical envi
ronment. Therefore, for the urban land types in the LCZ, we chose the 
spatial driving factors related to the social economy, such as population, 
road, and points of interest (POI). For the natural land types in the LCZ, 
we selected spatial driving factors that reflect physical conditions, such 
as terrain, soil quality, temperature, and precipitation. All the spatial 
driving factors used in the LCZ simulation in this study are shown in 
Table S1.  

(2) Data for the projection of land-use demands under SSPs 

In this study, we used the Global Change Analysis Model (GCAM) 
model to predict land demands’ changes under SSPs. The GCAM model 
requires global-scale land cover data for calibration, so we chose MODIS 
land cover data as calibration data for GCAM. Besides, since the GCAM 
model cannot forecast urban land demand, we refer to the urban land 
demand data created by Chen et al. [28], which considers the changes in 
GDP, population, and urbanisation rate under different SSPs to predict 
the corresponding urban land demands.  

(3) Ecological control line 

The ecological control line data is crucial for evaluating environ
mental policy. However, we could hardly find available data on the 
ecological control line in public databases. Therefore, we used GIS tools 
and several recognised guidelines to extract the range of GBA’s 
ecological control lines [41]. The specific guidelines are as follows: First, 
first-level water source protection areas, scenic spots, nature reserves, 
concentrated areas of basic cropland, natural forests, and country parks. 
Second, mountain and woodlands with a slope higher than 25◦. Third, 
main rivers, reservoirs, and wetlands. Fourth, ecological corridors and 
green spaces that maintain the integrity of the ecosystem. Fifth, islands 
and coastal land areas with ecological protection value. Sixth, other 
areas that require basic ecological control. 
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2.3. Method of the LCZ classification 

Nowadays, more and more open-accessed satellite-based remote 
sensing images are freely available to the public, such as multispectral 
and backscatter imageries. It is possible to develop LCZ maps and 

monitor urbanisation progress easily and systematically. Our LCZ 
mapping comprised three key steps: (1) input data-processing using the 
GEE platform; (2) LCZ samples data (for training and validation) 
collection using Google Earth Pro; and (3) application of the random 
forest classifier, as conducted by the LCZ classification of Chung et al. 

Fig. 1. Flow chart of this study.  

Fig. 2. Location and extent of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA).  
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[42]. 
First, the Sentinel-1 SAR GRD (C-band Synthetic Aperture Radar 

Ground Range Detected, log scaling, cloud-free), Sentinel-2 MSI (Multi- 
spectral Instrument, Level-1C), and VIIRS (Stray Light Corrected 
Nighttime Day/Night Band Composites Version 1) of the year 2020 and 
GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010) 
were clipped within the region-of-interest (i.e. the GBA region) and 
employed as the primary image sources for mapping LCZ of 2020 in the 
GBA. All spectral bands of Sentinel-2 MSI after masking off the cloudy 
pixels, backscatter values (i.e., VV and VH) of Sentinel-1 SAR GRD, 
“avg_rad” of VIIRS Stray Light, and “be75” (i.e., elevation information) 
of GMTED2010 were selected as input data for classification. 

The second input to the classification were 2144 training samples 
(Fig. S1) collected across the urban areas and their surrounding areas 
within the GBA region based on the representative characteristic of LCZ 
types (Table 1). Sample polygons were digitised and saved as vectorised 
KMZ format using Google Earth Pro before imported into Google Earth 
Engine (GEE) platform. Samples were split randomly with 70% samples 
(1459 samples) as training samples and the remaining 30% samples 
(685 samples) as validating samples to evaluate the classifier’s 
performance. 

The above satellite images, geospatial data and the 1459 training 
sample polygons were used to train a random forest classifier in the GEE 
platform. Random forest is an ensemble classifier operated by con
structing multiple decision trees in a training session and assigning the 
target’s class by majority vorting [43]. Each tree in the random forest 
will spit out a class prediction, and the class with the most votes would 
become the classifier’s final prediction. We chose this classifier because 
it can protect each decision tree from individual errors, balance the 
achieved accuracy and computational performance [44]. The GEE ". 
smileRandomForest” package was employed to implement the random 
forest classification. In this study, we set all parameters at the GEE 
default values, except the n-tree (the number of trees). A grid search of 
five trees per grid was performed from 1 to 100 trees to determine the 
optimal number of trees for classification. 80 trees were set as the 
optimal number of trees for classification according to the error tests in 
this practice. The LCZ map of the GBA region was then generated for the 
year 2020 (see Fig. S2). 

2.4. Prediction of future LCZ demands of under SSPs 

GCAM is one of the well-known integrated assessment models (IAM), 
which participates in Coupled Model Intercomparison Project Phase 6 
(CMIP6) [27,45]. GCAM is a complex system coupled with multiple 
departments considering political, physical, technological, and spatial 
detail [46]. Therefore, it can predict the future land use demand under 5 
SSP scenarios, taking into account the different storylines of these SSPs. 
Moreover, it is a rare IAM model that can be downloaded for free, and 
the parameters of the model can be set as needed [47]. Consequently, we 
chose the GCAM model to predict future land demand under SSPs. As a 
global-scale model, this study only needed the global land cover data 
(MODIS land cover data) of the initial year as input to execute and 
output the forecast results of land demand. 

However, GCAM cannot output forecasts for future urban land de
mand. Hence, we have to choose another model that can predict future 
urban land demand. Chen et al. [28] proposed a panel data regression 
model to predict the future urban land demand under SSPs, which 
considered socioeconomic factors such as GDP, population, and urban
isation rate. Their results reasonably reflected the trends of urban land 
demand caused by different SSPs storylines. Therefore, we adopted their 
forecast of future urban land demand. To be precise, we used their 
predicted urban land demand trajectory (rate of change) in China under 
the SSPs to calculate the future urban land demand based on our initial 
urban land data. 

GCAM and Chen’s land classification systems are not consistent with 
the LCZ. We thus established a reclassification scheme to unify these 
classifications for space simulation (Table 2). The land types of GCAM, 
Chen’s, and LCZ were merged and correspond to six classes (forest, 
shrub, low plants, urban, barren, water). Primarily, the urban land de
mand was allocated to the urban-type land in the LCZ according to the 
proportion of them in the initial year. 

Since both GCAM and Chen’s models predict China as a whole, and 
there is a gap in the area of different data in the initial year, we need to 
calibrate the gap in the area between the GCAM and Chen’s prediction of 
China and our LCZ product of the Greater Bay Area. The principle of 
calibration is to maintain the trajectories of various land types provided 
by GCAM and Chen’s model under SSPs. We used the following formula 

Table 1 
Surface properties of local climate zones (LCZs) simplified from Stewart & Oke [30].  

LCZ 
types 

Built and land cover 
types 

Anthropogenic heat flux 
densitya 

Aspect 
ratiob 

Sky view 
factorc 

Building surface 
fractiond 

Impervious 
surface 
fractione 

Height of roughness 
elementsf 

LCZ 1 Compact high-rise 50–300 >2 0.2–0.4 40–60 40–60 >25 
LCZ 2 Compact mid-rise <75 0.75–1.5 0.3–0.6 40–70 30–50 8–20 
LCZ 3 Compact low-rise <75 0.75–1.5 0.2–0.6 40–70 20–40 3–8 
LCZ 4 Open high-rise <50 0.75–1.25 0.5–0.7 20–40 30–40 >25 
LCZ 5 Open mid-rise <25 0.3–0.75 0.5–0.8 20–40 30–50 8–20 
LCZ 6 Open low-rise <25 0.3–0.75 0.6–0.9 20–40 20–40 3–8 
LCZ 7 Lightweight low-rise <35 1–2 0.2–0.5 60–90 <10 2–4 
LCZ 8 Large low-rise <50 0.1–0.3 >0.7 30–50 40–50 3–10 
LCZ 9 Sparsely built <10 0.1–0.25 >0.8 10–20 <20 3–8 
LCZ 10 Heavy industry >300 0.2–0.5 0.6–0.9 20–30 20–40 5–15 
LCZ A Dense trees 0 >1 <0.4 <10 <10 3–30 
LCZ B Scattered trees 0 0.25–0.75 0.5–0.8 <10 <10 3–15 
LCZ C Bush, scrub 0 0.25–1.0 >0.9 <10 <10 <2 
LCZ D Low plants 0 <0.1 >0.9 <10 <10 <1 
LCZ E Bare rock or paved 0 <0.1 >0.9 <10 >90 <0.25 
LCZ F Bare soil or sand 0 <0.1 >0.9 <10 <10 <0.25 
LCZ G Water 0 <0.1 >0.9 <10 <10 – 
LCZ H Wetlandsg 0 <0.1 >0.9 <10 <10 –  

a Mean annual anthropogenic heat flux density (Wm− 2) at the local scale. Varies significantly with latitude, season, and population density. 
b Mean height-to-width ratio of street canyons (LCZ 1–7), building spacing (LCZ 8–10), and tree spacing (LCZ A–H). 
c Ratio of the amount of sky hemisphere visible from ground level to that for an unobstructed hemisphere. 
d Proportion of the ground surface with building cover (%). 
e Proportion of the ground surface with impervious cover (rock, paved) (%). 
f Geometric average of building heights (LCZ 1–10) and tree/plant heights (LCZ A–F) (m). 
g Wetlands is an additional LCZ type that adapted the land surface properties of coastal cities in the GBA region. 
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to execute the calibration: 

ΔAi,t+1 =
ΔGAi,t+1 × TAB

TAC  

where, ΔAi,t+1 represents the changing area in the Greater Bay Area of 
land type i from time t to time t+1. ΔGAi,t+1 represents the changing area 
in China of land type i from time t to time t+1 provided by GCAM or 
Chen’s model. TBA means the total area of the Greater Bay Area. TAC 
means the total area of China. 

2.5. Future LCZ simulation by FLUS 

To satisfy the simulation needs of multi-land-type and 100-m-resolu
tion, we performed spatial simulations by the FLUS model, which has 
reliable computing power and accuracy [48]. The software of FLUS is 
available for free with a user manual at http://www.geosimulation.cn/ 
FLUS.html. The FLUS is a CA-based model with two significant im
provements. While retaining the essential characteristics of cellular 
automata (CA), FLUS adopts a roulette selection mechanism and a 
self-adaptive inertia mechanism [38]. The roulette selection mechanism 
can realise the complex competition between different land types. 
Simultaneously, it eliminates the defect that users need to set thresholds 
subjectively in traditional CA to determine whether the grid changes its 
status. The adaptive inertia coefficient is an internal parameter that 
adjusts the simulation speed. It can automatically adjust itself according 
to the gap between the current land area and the land demand after each 
iteration so that all land types finally reach their demands. 

Each grid is estimated with total probabilities corresponding to each 
land type in each iteration, and the roulette selection mechanism de
termines the state of the grid in the next step based on these total 
probabilities. The formula for calculating the total probability is as fol
lows [48]: 

TPi,j =Pgi,j × neighbori,j × inertiaj × consk→j  

where, TPi,j represents the total probability of grid cell i becoming land 
type j. Pgi,j represents the suitability probability of land type j on grid 
cell i. neighbori,j means the neighborhood effect of land type j around 
grid cell i, and it is positively related to the number of grids of land type j 
around grid cell i. inertiaj means the adaptive inertia coefficient of land 
type j. consk→j represents the constraint of changing from the current 
land type k to land type j. That is, its value is 0 when such conversion is 
not allowed, and otherwise, the value is 1. In this study, we neither allow 

urban land to convert to non-urban land types nor simulate water 
changes. 

One of the keys to ensuring the simulation’s accuracy is the suit
ability probability. It is estimated in FLUS by the artificial neural 
network (ANN), considering various spatial driving factors. The adopted 
spatial driving factors should fully reflect the relevant factors affecting 
the changes of each land type [40,49]. The FLUS model randomly 
selected a small number of grids (1%) as sample points and collected the 
values of the spatial driving factors and the land type in the initial year 
on these sample points. Then, 70% of the samples were fed into the ANN 
to train and fit the relationship between spatial driving factors and land 
type. The remaining 30% of the samples were used to assess the per
formance of the training of the ANN [48]. 

Considering the differences in spatial driving factors for urban-type 
and non-urban-type lands in LCZ, our LCZ simulation and the estima
tion of suitability probability were divided into two parts accordingly. 

The first part was to simulate the spatial changes of the urban-type 
land in the LCZ (LCZ 1–10). To estimate the suitability probabilities of 
the urban-type land, we contained relevant spatial driving factors into 
the ANN, such as population, road, different types of points of interest 
(POI), and terrain (Table S1). Types of POI included commercial 
building, retail, hotel, restaurant and entertainment, hospital, school, 
company, park and square, residential community, governmental 
organisation, bus station, airport, railway station, and car park. Each of 
them was evaluated for their kernel density distribution for the ANN 
training and estimation. With the estimated suitability probabilities, we 
executed the FLUS model to simulate the spatial change of LCZ 1–10 
under SSPs and the constraint of the LCZ demands. 

The second part was to simulate the remaining land types (forest, 
shrub, cropland, barren). Considering that these land types are greatly 
affected by physical conditions, we added pertinent spatial driving 
factors when estimating their suitabilities, including climate conditions 
and soil quality (Table S1). Like the first part, the ANN was trained to 
estimate the suitabilities and execute the FLUS model to simulate the 
land use’s spatial change. All the spatial driving factors we used are 
shown in Table S1. 

After completing the two parts of the LCZ simulation, we also need to 
allocate the five land types (forest, shrub, cropland, barren, water) into 
corresponding the LCZs (LCZ A–H). We further allocated the five land 
types grid-by-grid to the LCZ closest to them in the initial year according 
to the nearest neighbour principle and Table 2. For this process, we used 
the spatial analysis tools provided by ArcGIS software. First, we used the 
Euclidean Distance tool to calculate the distance of each grid to each 
type in LCZ A-H in the initial year separately. Then, we used the Raster 
Calculator tool to convert grids belonging to the simulated five land 
types into the nearest corresponding LCZ type based on the relationship 
in Table 2. For example, a simulated forest grid is converted to LCZ A or 
LCZ B based on the euclidean distance calculated in the previous step. 
Finally, we mosaiced the simulation results of the first part (LCZ 1–10) 
and the second part (LCZ A-H) into a complete LCZ prediction product 
under SSPs. 

When performing simulations under the ecological control line 
constraints, this study only needs to add the ecological control line as a 
limiting condition and repeat the simulation with FLUS, maintaining the 
suitabilities and land demand unchanged. Within the extent of the 
ecological control line, natural land was not allowed to be changed into 
urban-type LCZs (LCZ 1–10). 

3. Results 

3.1. Accuracy of the LCZ classification 

An independent set of validation samples (i.e., 685 samples) was 
collected to evaluate LCZ classification results’ accuracy (Table S2). By 
comparing the developed LCZ results with ground truth data, the degree 
of confusion between the resultant classifications and the ground truth 

Table 2 
Land classifications for our simulation based on the GCAM model, LCZ and 
MODIS.  

Our simulation GCAM LCZ MODIS 

Urban/LCZ 
1–10 

Urban LCZ 1–10 Urban and Built-up Lands 

Forest Forest LCZ A, LCZ 
B 

Evergreen Needleleaf Forests 
Evergreen Broadleaf Forests 
Deciduous Needleleaf Forests 
Deciduous Broadleaf Forests 
Mixed Forests 

Shrub Shrubs LCZ C Closed Shrublands 
Open Shrublands 

Low plants Grass LCZ D Woody Savannas 
Savannas 
Grasslands 

Crops Croplands 
Cropland/Natural Vegetation 
Mosaics 

Barren Tundra LCZ E, LCZ 
F 

Permanent Snow and Ice 
Rock and 
desert 

Barren 

Water Water LCZ G, LCZ 
H 

Water Bodies 
Permanent Wetlands  
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can be calculated. The assessment results are presented in a confusion 
matrix. With an overall accuracy of 94.4%, built-up accuracy of 71.0%, 
and kappa coefficient of 0.876, the quality of the developed LCZ data is 
acceptable, according to Bechtel et al. [31]. 

3.2. Accuracy of the LCZ simulation 

Fig. 3 shows the LCZ simulation results in each SSP scenario in 2100. 
In the FLUS model, the suitability probability is the key to simulation 
accuracy [28,48]. We used the Area Under the Curve (AUC) to reflect the 
accuracy of the obtained suitability probability (Fig. 4 and Table S3). 
The AUC of the suitability probabilities of all land types during the 
simulation has reached an acceptable value. Their average is 0.744, 
showing that our simulation accuracy is reliable. Among them, barren 
has the lowest AUC, which is only 0.613. However, it has a limited 
impact on the simulation results’ overall performance because the pro
portion of barren in the GBA is tiny. 

Similarly, LCZ 5 (open midrise) has a relatively low AUC of 0.628. 
LCZ 5 represents mid-rise building areas with low density. LCZ 5 is also 
less distributed in the GBA, so it attains a relatively low but acceptable 
accuracy. 

3.3. Differences of LCZ changes between different SSPs 

Different LCZs present different demand trajectories in different 
scenarios. We merged 18 types of LCZ into 5 types to facilitate the 
display and showed their demand changes in Fig. 5. It indicates that 
GBA’s urban land (LCZ 1–10) demand will continue to rise before the 
2040s–2050s but will be frozen after that. The freeze is mainly due to the 
decline in China’s future population in the SSP forecast data [28]. From 
a scenario perspective, urban land has the largest increase in the SSP5, 
the fossil-fuelled development path, followed by the SSP1, the green 
development path. In SSP3, urban land demand is the lowest due to 
de-globalisation, slow economic development, and low population 
growth. The changing trends of shrubs (LCZ C), low plants (LCZ D), and 
barren (LCZ E&F) show a clear negative correlation with urban land. 
They suffer a significant decrease before the 2050s but have become flat 
since then. 

In addition to the substantial urban expansion, another noticeable 
feature is the overall growth of forest (LCZ A&B) in SSP4 (Fig. 5). In most 
scenarios, GBA’s forest shows recovery and growth, except for SSP3. In 
SSP3, the lack of regulation of land changes leads to weak forest resto
ration. In SSP4, the divided path, the GBA forest areas can get the best 
recovery and growth because the GBA as the middle and high-income 
regions can implement the policy of reducing deforestation and 
strengthening afforestation. Also, SSP1, the green development path, 
will see evident growth in the forest. 

We performed an LCZ simulation on GBA based on the above de
mand. The simulation results allow us to discover the different land 
responses of cities in GBA to SSP scenarios. Fig. 6 shows the changes of 
varying land types in typical GBA cities from 2020 to 2100. Fig. 6 a, b, 
and c show the land area changes of the core cities in the GBA, 
Guangzhou, Shenzhen, and Hong Kong. It clearly shows that the land 
change in core cities is dominated by urban land. The natural land use in 
core cities will reduce in the future in almost all scenarios. One excep
tion is that Hong Kong achieves forest growth in SSP4 due to the 
implementation of afforestation policies. Fig. 6-d, e and f show the land 
area changes of fringe cities in the GBA, Huizhou, Jiangmen, and 
Zhaoqing. In sharp contrast with the core cities, the forest will expand in 
the fringe cities in most scenarios, even faster than urban land. Besides, 
the reduction of low plants is mainly controlled by urban expansion in 
the core cities, while it is jointly affected by urban and forest in the 
fringe cities. 

In addition to quantitative statistics, we analyse the spatial changes 
of different land types. We used block statistics to enhance the visual
isation to display the land changes within every 5-km grid by 2100 
(Figs. 7–9). Fig. 7 shows the spatial changes of forest (LCZ A&B) under 
different SSPs from 2020 to 2100. Forest has the most significant growth 
in SSP4 and SSP1. The forest growth is mainly concentrated on the GBA 
fringe, corresponding to Jiangmen, Zhaoqing, and Huizhou. At the same 
time, the forest in the central area of the GBA experiences a decrease. In 
SSP5, where the urban expansion is the most intense, this contrast is 
even more apparent. 

Fig. 8 shows the spatial changes of shrubs (LCZ C) under different 
SSPs from 2020 to 2100. Shrub occupies less rea in GBA, so its change is 
also slight. Unlike the forest, the shrub changes are more concentrated in 

Fig. 3. LCZ simulation results in 2100 in each SSP scenario.  
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areas close to urban land. However, shrub also tends to decrease in the 
central area and increase in the periphery. 

Low plants (LCZ D) is a considerable land type in GBA. Generally, 
low plants include two types of land: grassland and farmland. However, 
since GBA has few grasslands, the low plants (LCZ D) in GBA are almost 
representing farmland. Fig. 9 shows the spatial changes of low plants 
(LCZ D) under different SSPs from 2020 to 2100. In SSP3, the low plants’ 
changes are the slightest, it is due to the low growth of urban land due to 
economic depression and population decline, and the non- 

implementation of afforestation policies. In the remaining four SSPs, 
low plants experience a wide range of reductions in both central and 
peripheral areas. Comparing to Fig. 7, it can be found that the amount of 
reductions in low plants are due to forest encroachment. 

Simulation results also depict the spatial changes in urban LCZs. 
Urban LCZs contain ten sub-types, and the area of each type is so small 
that it is difficult to visualise their changes. Therefore, the SSP2 scenario 
is taken as an example as it is considered to be the scenario closest to the 
historical trajectory. A table is also used to statistically present the city- 

Fig. 4. ROC Curve of the land types in our simulation.  

Fig. 5. The land demands of various land types in GBA under the SSPs from 2020 to 2100.  
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level changes in the urban LCZs (LCZ1–10) in the GBA (Table 3). Table 3 
shows the differences in the development of urban LCZs in cities with 
different development levels. The growth of LCZ 1–4 (compact building 
and open high-rise building) is more clearly dominated in the central 
cities (Guangzhou, Shenzhen, Dongguan, and Foshan). The growth of 
LCZ 6–9 (open/lightweight/large low-rise building and sparse building) 
is more concentrated in fringe cities (Huizhou, Jiangmen, and 

Zhaoqing), which have relatively low urbanisation degrees in the cur
rent. Simultaneously, Guangzhou, the city with the largest urban area in 
the GBA, has a significant increase in LCZ 6 & 7 because it contains some 
districts with a relatively low urbanisation rate. LCZ 5 & 10 (open mid- 
rise and heavy industry) changes are smaller than other urban LCZs. It is 
worth noting that the LCZ 7 (lightweight low-rise) in Shenzhen and 
Dongguan has decreased significantly, which indicates that the urban 

Fig. 6. The area change of different land types in typical GBA cities from 2020 to 2100.  

Fig. 7. Spatial changes of forest (LCZ A&B) under different SSPs from 2020 to 2100.  
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landscape upgrade process of these two cities may be ahead of other 
cities. 

3.4. Impact of ecological control line policy on land-use change 

The simulation results shown above do not consider the ecological 
control line. Therefore, in this case, the urban land expansion will 
inevitably encroach on ecological lands (LCZ A–H). We counted the 
encroachment on each city’s ecological lands in GBA by urban land 
through the ecological control line data (see Table 4). The extent of 
encroachment on ecological lands is positively correlated with urban 

expansion’s intensity under each SSP. As the largest city in the GBA 
region, Guangzhou suffers the most encroachment on ecological lands 
without ecological control lines. As one of the first-tier cities of the GBA, 
Shenzhen has fewer encroached ecological land areas because it has 
more hilly and mountainous areas that are difficult to be encroached by 
urban expansion. It should be noted that Jiangmen and Huizhou, two 
cities with relatively backward economic development, may face sig
nificant pressure of encroachment on their ecological lands in the future. 

Furtherly, we explored the type of LCZ corresponding to the 
ecological lands occupied by urban expansion within the ecological 
control line (see Table 5). In other words, assuming 100% strict 

Fig. 8. Spatial changes of shrubs (LCZ C) under different SSPs from 2020 to 2100.  

Fig. 9. Spatial changes of low plants (LCZ D) under different SSPs from 2020 to 2100.  
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implementation of the ecological control line, these ecological lands will 
be preserved. From a scenario perspective, implementing the ecological 
control line policy in SSP5 can protect more ecological land from urban 
expansion, which illustrates the importance of implementing the 
ecological control line policy in SSP5. On the other hand, under the 
ecological control line policy, LCZ D (low plants) benefits the most, 
mainly farmland. LCZ C (shrub) and LCZ A (dense trees) can also be well 
protected under the implementation of the ecological control line policy. 

Due to spatial heterogeneity, the benefits of implementing the 
ecological control line policy in different cities are different. Table 6 
counts the proportion of ecological land protected in each city due to the 
implementation of the ecological control line. It shows that in the SSP5, 
where urban expansion is the most intense, the ecological control line 
plays the most significant role in protecting ecological lands. The pro
tection is most evident in Dongguan. In Dongguan, approximately 50% 
of the ecological control line area is protected by implementing the 
ecological control line policy. In Guangzhou, Shenzhen, Foshan, 
Zhongshan, and Jiangmen, the ecological control line’s protective ef
fects are also evident, reaching 10%–20%. In other words, ecological 
land protection in most cities in GBA will be significantly improved due 
to the implementation of the ecological control line policy. 

Therefore, we simulated the future LCZ changes of each SSP scenario 
again, considering the ecological control line constraints. By overlaying 
the previous simulation results without ecological control line 

constraints, it can clearly show how the ecological control line protects 
ecological lands. Figs. 8 and 9 show the protective effects of the 
ecological control line through typical areas. The red grids represent the 
ecological land that will be occupied by urban land in the future without 
the constraints of the ecological control line. In the simulation of 
considering the constraints of ecological control lines, this part of 
ecological lands is protected. Meanwhile, the parts of the urban 
expansion blocked by the ecological control line will be transferred to 
other places, as the blue grids in Figs. 10 and 11. 

Fig. 10 shows the core urban area of Dongguan, which is an impor
tant big city located in the central area of GBA. It can be seen that under 
the constraints of the ecological control line, the scattered ecological 
land within the core urban area is preserved in the process of urban 
expansion. Instead, the new urban land is transferred to the city’s fringe 
in a scattered manner. For comparison, Fig. 11 shows the situation in 
Jiangmen, a city relatively far from the GBA center. Its main urban area 
is relatively small, and there is almost no ecological land inside. Without 
the constraint of the ecological control line, new urban land here in
vades many surrounding ecological lands within the ecological control 
line (red grids). However, under the constraint of the ecological control 
line, the urban expansion would be guided in the appropriate direction 
of reducing the impact on ecological lands. 

4. Discussion 

Our results show the impact of SSP scenarios on LCZ changes. In SSP5 
and SSP1, urban (LCZ 1–10) expansion is the most evident due to rapid 
economic development and relatively large population growth. In the 
SSP3 with the slowest economic development, urban expansion is the 
least. In the SSP4, the rapid expansion of forest (LCZ A&B) is in sharp 
contrast with other scenarios because the GBA can adopt the reforesta
tion policy as the developed area does in this divided pathway. More
over, the trajectories of other land types in the GBA in each SSP show a 
negative correlation with urban and forest trajectories. On the one hand, 
the results prove the leading role of urban expansion, which is closely 

Table 3 
The area change of urban (LCZ1~10) in each city in the GBA from 2020 to 2100 in SSP2 (unit: km [2]).   

Guangzhou Shenzhen Dongguan Foshan Zhongshan Zhuhai Huizhou Jiangmen Zhaoqing Hong Kong Macao 

LCZ1 27.51 39.4 31.22 20.36 9.07 6.7 16.7 6.83 3.09 7.75 1.28 
LCZ2 29.77 27.49 38.59 29.83 14.16 5.77 13.91 12.94 5.37 1.9 0.18 
LCZ3 64.54 10.83 47.61 52.08 23.03 14.16 41.1 33.45 19 8.62 0.02 
LCZ4 60.23 27.51 48.51 61.9 30.18 12.45 20.36 18.18 8.92 14.09 0.75 
LCZ5 4.6 − 0.3 − 0.26 3.48 3.58 9.43 9.14 10.68 3.99 2.75 0.12 
LCZ6 97.74 14.73 22.56 3.09 − 0.29 0.97 94.22 37.88 27.82 0.66 − 0.21 
LCZ7 47.18 − 13.55 − 21.03 13.07 2.22 6.79 35.38 152.14 56.67 − 1.19 − 0.14 
LCZ8 14.6 − 4.89 3.64 37.63 21.06 19.06 11.67 37.94 10.84 − 0.3 1.54 
LCZ9 − 8.26 11.07 2.36 − 2.28 − 1.63 0.39 57.06 18.48 10.74 2.32 0.06 
LCZ10 11.37 − 3.14 5.01 − 1.91 3.15 18.61 − 0.91 4.15 1.77 1.07 0.71  

Table 4 
Urban expansion encroaches on ecological land in GBA’s cities without the 
constraints of ecological control lines (km [2]).   

SSP1 SSP2 SSP3 SSP4 SSP5 

Guangzhou 590.27 563.34 524.55 543.89 628.30 
Shenzhen 43.18 41.24 38.25 39.90 47.83 
Dongguan 280.36 271.55 256.12 264.32 291.27 
Foshan 163.33 158.16 151.09 154.98 170.70 
Zhongshan 146.69 142.12 133.92 138.05 154.96 
Zhuhai 30.49 29.12 27.25 27.92 33.83 
Huizhou 470.23 450.29 421.47 436.07 494.47 
Jiangmen 581.60 554.52 518.56 536.04 618.49 
Zhaoqing 266.79 255.64 243.09 249.62 280.48 
Hong Kong 22.04 21.38 20.33 20.86 23.24 
Macao 0.04 0.04 0.04 0.04 0.04  

Table 5 
The ecological land in the GBA that is free from being invaded by urban 
expansion under the constraints of the ecological control line in each scenario 
(km [2]).  

LCZ SSP1 SSP2 SSP3 SSP4 SSP5 

A 108.28 79.15 50.97 82.85 144.08 
B 81.09 52.31 32.21 63.12 97.96 
C 116.24 91.44 57.15 86.23 135.32 
D 289.2 269.34 213.62 187.38 375.59 
E 10.81 9.36 7.64 8.47 12.75 
F 8.45 6.79 5.01 5.97 9.84  

Table 6 
Ecological lands that preserved in each city due to the ecological control line 
policy by 2100.  

City Ecological lands preserved due to the ecological control line policy (%) 

SSP1 SSP2 SSP3 SSP4 SSP5 

Guangzhou 16.51 15.76 14.67 15.21 17.57 
Shenzhen 10.15 9.69 8.99 9.38 11.24 
Dongguan 50.30 48.72 45.95 47.42 52.26 
Foshan 14.95 14.48 13.83 14.19 15.63 
Zhongshan 20.77 20.12 18.96 19.55 21.94 
Zhuhai 5.23 5.00 4.68 4.79 5.80 
Huizhou 6.87 6.58 6.16 6.37 7.22 
Jiangmen 13.12 12.51 11.69 12.09 13.95 
Zhaoqing 2.48 2.38 2.26 2.32 2.61 
Hong Kong 4.57 4.43 4.21 4.32 4.82 
Macao 2.13 2.13 2.13 2.13 2.13  
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related to human activities, in the land change of GBA. On the other 
hand, the results also show that ecological management measures such 
as reforestation play a vital role in GBA’s ecological landscape repre
sented by forest. 

The simulation results also illustrate the difference in land response 
between central cities and fringe cities. On the one hand, the difference 
is reflected in the dominant types of land change. In central cities, such 
as Guangzhou, Shenzhen, and Hong Kong, urban land plays an absolute 
leading role. That means only urban land in the central cities increases in 
each SSP, while other land types decrease due to urban expansion. 
However, In the fringe cities, such as Huizhou, Jiangmen, and Zhaoqing, 
land change is dominated by both urban land and forest. Even in some 
scenarios, the forest grows more than urban land. That means the fringe 
cities have assumed more ecological functions. On the other hand, the 
difference is also reflected ins the changes in urban LCZs (LCZ 1–10). 
Some urban LCZs related to high-level urbanisation, such as LCZ 1–4, 
tend to grow in central cities. Simultaneously, some urban LCZs related 
to primary urbanisation, such as LCZ 6–9, tend to expand in fringe cities. 
The different land responses indicate that cities in the GBA with different 
development levels will face various land change challenges, even when 
facing the same scenario. It is still necessary to formulate land man
agement and urban planning policies according to local conditions in the 
context of the coordinated development of the GBA. 

There is a significant effect to implement the ecological control line. 
Ecological land protection in most cities in GBA will be significantly 
improved due to the implementation of the ecological control line pol
icy. Nevertheless, at the same time, this effect also reflects the difference 
between central cities and fringe cities. In central cities, ecological 
control lines can protect the scattered ecological land within the built-up 

area from being encroached on urban land. Therefore, this can better 
maintain the city’s ecological landscape, conducive to realising Park 
City and Urban Sustainability concepts. However, in fringe cities, the 
role of ecological control lines is different. They have smaller built-up 
areas and not much internal ecological land. Therefore, ecological 
control lines’ role is more reflected in guiding urban expansion to the 
appropriate direction, rather than encroaching on surrounding ecolog
ical land. 

The data set we created in this study has many potential applications. 
First, it can be applied to policy impact assessment under the SSPs. It 
explores the land response of different policies in the SSPs with rela
tively fine resolution. Second, it can be used to explore urban land 
management under the SSPs. The simulation under the constraints of 
ecological control lines shows the impact of land management on urban 
expansion. Third, it can be used for research on urban climate. It uses the 
LCZ classification, which includes detailed urban land types. Therefore, 
urban climate researchers can obtain more relevant information from 
this set of data. 

There are some limitations to this study. First, we used the same 
spatial driving factors when simulating future land changes under 
different scenarios due to data availability. Second, due to the lack of 
forecast data and models, we did not establish a particular land demand 
forecast model for the GBA. As a compromise, we used China’s trend to 
apply to the GBA because they all belong to the middle and above units 
in their respective scales. Third, due to the current difficulty in obtaining 
time-series comparable LCZ maps, in this study, we did not perform a 
commonly adopted historical simulation of the LCZ spatial simulation 
model to verify its accuracy, but a compromised AUC test instead. 
Fourth, we did not consider the impact of climate on land change, which 

Fig. 10. The protective effect of the ecological control line on ecological lands in Dongguan from 2020 to 2100.  
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may restrict the use of ecological land types in this data set. 

5. Conclusion and future work 

There are three significant advances in this study. First, this should 
be the first work to carry out simulations of future LCZ distributions in 
the context of SSP scenarios, which will directly serve researchers with 
urban climate as LCZ is one of their most popularly used land use land 
cover data in climate studies. Second, in contrast to previous future land- 
use simulations that have treated urban land (impervious surface) as a 
whole, our product depicted fine land change within the city due to the 
adaptation of the LCZ classification. Such detailed land change infor
mation of inner city could be useful for intra-urban variation related 
studies. Third, we explored the impact of land management policy 
(ecological control line) implementation on LCZ distribution. These 
advances can be embodied in many potential applications. For example, 
LCZ classification can provide more detailed information on land types, 
especially in the inner city. The simulation that includes a wealth of 
urban land types can provide more support for urban planning. More
over, the definition of LCZ type is closely related to the physical char
acteristics of the land surface, such as roughness, albedo and 
anthropogenic heat output [30]. These physical characteristics infor
mation can better serve climate researchers. 

In this study, we first created a data set of 2020 LCZ classification of 
the GBA with an overall accuracy of 94.4%. Then, we implemented 
simulations of LCZ changes for a 10-year time interval from 2020 to 
2100 under SSPs with an AUC average accuracy of 0.744. The results 
show that there are differences in land response between central cities 
and fringe cities. In central cities, the urban-type LCZ dominates the 

LUCC, i.e., urban-type LCZ is almost always the only growing land type 
in each SSP. In contrast, in fringe cities, both forest and urban-type LCZ 
grow, and even forest grows more rapidly. Moreover, more urban 
growth of compact and high-rise types (LCZ 1–4) in central cities, while 
the fringe cities have undertaken more urban development of mid-rise 
and low-rise types (LCZ 6–9) and forest LCZ. 

Furthermore, we explored the impact of the ecological control line 
policy on land change. The results show that the implementation of 
ecological control line can be more effective in protecting ecological 
land (8.99%–52.26%) in central cities under the SSPs but slightly less 
efficient in protecting fringe cities (2.26%–13.95%). Moreover, the 
central city’s ecological control line can better protect the ecological 
land within the built-up area, which is conducive to constructing a good 
ecological landscape. In fringe cities, the ecological control line can 
guide urban expansion in the appropriate direction to protect critical 
ecological resources. 

In our future work, we will establish a particular land demand 
forecasting model for the GBA when more detailed forecast data under 
the SSP scenarios are available. The detailed spatial forecast data allows 
us to update the spatial driving factors of the land simulation to improve 
the simulation results’ interpretability. Furthermore, as historical LCZ 
data are refined in the future, we can carry out historical LCZ simula
tions to more fully validate the performance of the FLUS model in 
simulating LCZ changes. Besides, based on this study’s products, we will 
explore urban climate changes in different future scenarios, considering 
land feedback. 

Fig. 11. The protective effect of the ecological control line on ecological lands in Jiangmen from 2020 to 2100.  
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